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ABSTRACT

The relationship between the (generalized) mean
Kuliback-Leibler's information and the (generalized) maximum
likelihood principle is exploited in this report to analyze the
state estimation problems of both discrete-time and
continuous-time uncertain non-linear systems.
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1. INTRODUCTION

In solving practical state estimation problems, we often

encounter two difficult questions. The first question is related

to the accuracy of the deterministic model used for fitting the

dynamics of measurements. The second question concerns the

accuracy of the statistical model of measurement errors. Since

the exact mathematical representation of the physical measurement

process is not known, a conservative but prejudiced approach to

resolve the above two questions is to adjust parameters in the

model until measurement residuals are acceptable. (This approach

is prejudiced because almost all anomalies in the residuals can

be made to disappear by carefully adjusting parameters in the

model.) The resulting state estimates, therefore, differ

significantly for different practitioners who depend heavily on

models and personal experience in residual analysis. Moreover,

the accuracy of the dynamical model and the statistical behavior

of the measurement process are two compromising quantities

especially well-known to those who use Kalman filters

extensively. For a given measurement accuracy, it was observed

in [1] and [2] that a Kalman filter might diverge due to the

inaccuracy in the dynamical model. Adding bo-called "process

noise" to the dynamical model may prevent filter divergence

[1,3,4]. A detailed analysis of filter divergence for a
time-invariant linear system is documented in [1]. In regard to

the selection of the covariance matrix of the process noise,

people in the field often admit that it is more an art than a

science.

Akaike (5] applied the mean Kullback-Leibler's information

(MKLI) [61 to extend the maximum likelihood principle. Perhaps
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the most astonishing result of [51 in terms of the impact on time

series analysis is that a computable quantity called model
unreliability is introduced and applied to some practical

problems. The combination of model unreliability and badness of
fit was used in [5] and [71 as a measure to select parameters in
a model for a stationary, ergodic process. The same idea was

extended recently in [81 to determine the order of a linear

time-varying auto-regressive model.

In this report, we follow the reasoning in (6] and (81 to
address when to terminate adjusting parameters in a non-linear

system and how to select the best non-linear state estimate among

many candidates. However, only the asymptotic result is

obtained. Further studies are required to extend the result

reported herein to cover the finite sample cases.

The structure of this report is summarized in Figures 1 and

2. Hopefully, these figures can also be thought as the logic
tree that describes the linkage of many small pieces throughout

the report.
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CONNECTED BY
ASYMPTOTIC THEORIES

(Theorems 3.1. 3.2. and 3.3)

-- - MLE
MKLIME MKLI COMPUTABLE
* PROVIDE A MEASURE OF DISTANCE -T- 3.A, 3.B)

BETWEEN THE ASSUMED MODEL AND
THE TRUTH (§3.A. 3.B)

* IT IS NOT COMPUTABLE BECAUSE THE
TRUTH IS NOT KNOWN

Fig. 1. The structrue of the report: fixed dynamic
models.

CONNECTED BY
ASYMPTOTIC THEORIES
(Theorems 3.5 and 3.6)

GENERLIZED

GENERLIZED MKLI MLE
* A MEASURE OF DISTANCE BETWEEN e COMPUTABLE

THE MODEL AND THE TRUTH (§ 3.C)
(§3.C)

* NOT COMPUTABLE

Fig. 2. The structure of the report: tunable dynamic
models.
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2. NOTATIONS AND PRELIMINARIES

In this section, we formulate the general problem to be

addressed. Let z(t) be an m-dimensional vector measurement

process. The true representation of z(t) is assumed to be given

by

z(t) = hb (xo(),xo(l),...,Xo(t);t) + no(t) (2.1)

where ho is an m-dimensional single-valued function

differentiable with respect to the arguments, and no(t) is

m-dimensional, zero-mean white Gaussian noise with a
positive-definite covariance matrix Ro denoted by Ro > 0.

Throughout the report, a subscript 'o" refers to the true model.

Note that the probability density function of z(O),..,z(tl),

denoted by Po is well defined and uniquely determined by

System (2.1).

A mathematical model different from (2.1) is generally used.

Let the mathematical model be given by

4
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x(t+l) = f(x(t),t) , initial condition x(O) (2.2a)

z(t) = h(x(t),t) + n(t) (2.2b)

where x is a q-dimensional vector and n(t) is a zero-mean white

Gaussian noise process with a positive-definite covariance matrix

R. It is also assumed that f and h possess the same analytic

properties as ho . The probability density function induced by

(2.2) is denoted by P. Furthermore, we assume

h(jxo(0,t),t) = h(xo(O,t),t) (2.3)

where # is a function that maps the nt-dimensional Euclidean

space to the q-dimensional Euclidean space and

x0 (O,t) - (xOM,...,Xo(t)).

Many practical problems can be formulated by (2.2) for

estimating the initial state x(O) from measurements. Equation

(2.2a) describes the physical law governing the state vector,

whereas h in (2.2b) models the measurement function. In reality,

the exact physical law is either not known completely or is too

complicated to be applied directly. On the other hand, the

functional relationship between a given state vector and the

deterministic measurements is usually known. However, exact

statistical properties of measurement noise n(t) are seldom

known. The trajectory estimation problem is a typical example

5



that fits the above description exactly. The ballistic

trajectory of an object is governed by Newton and Euler

equations. An important part of the driving forces and torques

in Newton and Euler equations is due to air pressure. In

aerodynamicspressure is best modeled by a potential equation

which describes the velocity field of the air. It is impossible

with current technology to incorporate a potential equation with

Newton and Euler equations into the framework of the trajectory

estimation problem. On the other hand, what a radar can measure

about the target motion is modeled by (2.3).

The solution of the non-linear difference equation (2.2a) is

unique and denoted by x(t;x(O)). The Jacobian matrices F(t) and

H(t) are defined by

af(x, t)
F(t) " f (x, t (2.4)

t -ax x(t;x(O))

H.t) - h(x,t)

ax.- x - x(t;x(O)) (2.5)

The transition matrix of F(t) denoted by (t, t) satisfies the

following difference equation

0(t+l, r) = F(t) (t,r ) ; T() = I (2.6)

6
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where I is the q x q identity matrix. Furthermore, we define the

R-observability Gramian M(x(0);t I ) by

tl-

M(x(O);t) T * (T,0)H T(T)R- H(T)O(TO) (2.7)
T-0

where superscripts "T" and "-1" denote matrix transpose a
inverse respectively. The meaning of the observability imian

with respect to observability and unbiased estimation of .tem

(2.2) is described in [101.

In the first part of this report, we address the problem of

estimating x(t) from the observed sample for two different

situations. When the form of f in (2.2a) is fixed (except for

the initial condition x(0)), we shall classify this case as a

fixed dynamical model. We shall call the other case a tunable

dynamical model when the functional form of f is not fixed.

3. DISCRETE-TIME UNCERTAIN NON-LINEAR SYSTEMS

A. MKLI and MLE

The mean Kullback-Leibler's information (MKLI) is a function

of the likelihood ratio which gives a measure of separation

between two probability distributions. The normalized MKLI of

(2.1) and (2.2)is given by

ti
w A _ 2_, Eo P(Z0 ) (3.1)

W~PE(in O 0 (3.1)i)'+ Po (Zo

- L(x(O),R,t 1 ) + - Eo(ZnPo(Z

--.- t-t 0 0 0 . . '"" " - • - " Y ' ": "-.'< Y -
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NO.. where

L(x(O),R,t1 ) = InIRI + d (x(O),R,tI ) (3.2)

and d is defined by the following two equations:

.'t 2 (3.3)

A

, : ~ ~~~d(x(0),R,t ) = -z IIz() - x( - °)'tII-
1'° . 1 t-0 R-

-I. d(x(O),R,t) Eod(x(O),R,t1 )

(3.4)

- t 12
- - Tr(R R +t- Ih (. (O(o,t),t)-h(x(t;x(O),t)I R -I

tr0

Note that Eo is the expectation operator with respect to the

true probability density function Po, j.1 denotes the

determinant of the enclosed matrix, "Tr" denotes the trace of a

matrix, and . denotes the Euclidean norm. A smaller value of

W(tI ) means that the corresponding Model (2.2) is closer to

the truth in the sense of MKLI.

8



4 J.i

The maximum likelihood estimate (MLE) of (x(O),R) denoted by

AA

(x(O/tl), R(tl)) is defined to be the minimum point of

J(x(O),Rt)= InIRI + d(x(O),R,tl) (3.5)

It is easy to verify that

L(x(O),R,tI ) = EoJ(x(O),R,t I ) (3.6)

Note that the second term of (3.1) is a constant for a given
observed sample and independent of the assumed mathematical

model. Because of this fact and (3.6), it is not surprising to

see that the MKLI and the MLE have very close relationships.

Indeed, they are shown to be equivalent with probability one with

respect to the true probability density function (w.p.l, Po)

asymptotically if the limit of L with respect to tI is

unimodal [8].

B. FIXED DYNAMICAL MODELS

We shall first establish the unimodal condition of L

(x(O),R,tI ) for any finite tI and then state the equivalent

relationship between the MLE and the MKLI for the model given by
(2.2).

It requires three steps to establish the unimodal condition

of L(x(O),R,tl). The first step is summarized by the following

theorem.

4',9

•."4.'."" ". .""" "" : ,:' ": . ' '""" ' ; '""' ' . - : "" " "



47

4J

L?

Theorem 3.1 For a given R > 0, we hypothesize that

(i) x(O)cS, where S is a convex and compact subset of Rq

(ii) the observability Gramian M(x(0);t 1) > 0 for all

x(0) CS

(iii) for any bI, b 2 eS that minimize d (x(O),R,tl)

and c(t)eRq for each t, there exists b3 in S

such that

t 1 2 t-I 2

E 1l2h(c(t)) - (h(b1) +h(b 2 )f -1> Z flh(_(t)) -h(b3
t-0 R t=O

Under the above three hypotheses, there exists a unique minimum

point of d(x(O),R,tI ) in S.

Proof The existence of a minimum point in S is guaranteed by

the hypothesis that d is a continuous function defined over a

compact set S. Let bI and b2 be two minimum points of d in

S. Let

h i = h(x(t;bi),t) for i = 1,2.

10
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By the parallelogram law, we have

2 2
2[1 h-h II + IIh-h2I I

R RI: -2 1(3.7)

2 2
I 11l-- h 211 + 112h -(h h2)1

By Hypotheses (i), (ii) and by (2.3), we have

-- . (blb2S, and
-O2

(3.8)

tl1 2 tl-1 2E Il12h(I_ (0, t)) (h14:2)l > 4 E ljh(±x,%(Ot)- h(bo)[l
R- 1 t=O R-1

for all x(O0,t)cR t . Let c(t) = _0(x0 ,tl). By the fact

that both bI and b2 are minimum points of d and by (3.7) as

well as (3.8), we have

t1- 2 t1-1 2 tl-I 2E 11hl1-h 211 -4 -F Ilh(_ (,))-h111 E 11 h(c(t) - (h 1-t2)11
t-0 t-O - t=0 R

< 0 (3.9)

.1

'" 1 1I'C
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Equation (3.9) implies that

'tlI 2
4. 1-,EI I. . .]h Ch 211 0 (3.10)

t-0 R-I

By Hypothesis (ii) and Corollary 2.1.1 of [10], (3.10)

implies

b 2 Q.E.D.

Now let S be a set of initial states for Model (2.2). For a

fixed vector b, in S, it is known (for example, use the

technique introduced in [111) that there exists a unique

covariance matrix given by

R1 = Ro + X(bl,t I ) (3.11)

which minimizes L(x(O),R,tl) where X(blt I ) is defined by

t-1

X(b1 _t.) - (h-h(x (t;b),t))(h-h(x(t;b1),t))(
1 t-O (3.12)

Let C be a subset of m x m positive-definite matrices containing

Ro and those generated by S through (3.11) and (3.12).

Finally, the existence of a unique model is summarized by the

following theorem.

12



Theorem 3.2 Let S be a convex and compact set of initial

states, and C be the partially-ordered set of positive-definite

matrices defined above. If Hypotheses (ii) and (iii) of Theorem

3.1 hold for all R in C then there exists a unique point in S x C

which minimizes L(x(O),R,tI ).

Proof By Theorem 3.1, there exists a unique vector b in S

which minimizes d(x(O),R,ti ) for a given R in C. We can

construct a sequence in S x C as follows:

(1) Let bl be the unique vector in S which minimizes

d(x(O),Ro,t I ) and

R1 = o + X(bl,tl)

(2) bk is defined to be the unique vector in S which

minimizes d(x(O),Rk-l,tl) and

Rk = RO + X(bk,tl)

Since X(b,tI ) is continuous over a compact S, S x C is also

compact. There exists a limit point of (bk,Rk) denoted by
A A

(b,R) in the compact set S x C. We shall prove that the limit

point is unique.

13
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- By construction, we have

d(bk+l,Rk,tl) < d(bk,Rk,tl) (3.13)

Therefore, by definition and (3.13), we have

! ~ L(bk+l'Rk+l'tl) < L(bk+l,Rk,tl)

Hence, {L(bk,Rk,tl) } is non-increasing and bounded below in

R I . Thus, the limit exists and is denoted by L.. Let

f{(bk,,Rk') J be a subsequence such that

lim (bk , ,Rk , ) = (bR)
kv-1- co

Since L(b,R,t I ) is a continuous function defined over S x C, we

have

lim L(bk , ,Rk',tl) = L.(b,R,t I )

14



Due to the unique property of a convergent sequence, we have

L(b,R,tt) = L=

Suppose that (bl,Rl) is a minimum point of L in S x C. If
AA 

A

bl=b then (3.11) implies that R=R I . If bI * b, by

Hypotheses (ii) and (iii) of Theorem 3.1 for all R in C, we
AA

should have either X(b,tI ) > X(bl,t I ) or X(b,tI ) <

X(bl,tl). Assuming X(b,tI ) > X(bjl,tl), we have

A AA

d(blR,tl) < d(b,R,tl). (3.14)

Inequality (3.14) is a contradiction because b minimizes

cT(x(O),R,tl). On the other hand, if we have

d(b,Rl,tl) < d"(bl,Rl,tl)

then

L(b,Rl,tl) < L(bl,Rl,tl) (3.15)

Again, it contradicts the assumption that (bl,RI ) is a
A A

minimum point of L. Therefore, bl=b and RI=R.
Q.E.D.

15
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The equivalent relationship between the MLE and the MKLI is

established by two steps. For the first step, we shall assume

-9 that Theorem 3.2 holds asymptotically as tI approaches

infinity, and let (b,R) be the unique minimum point of

LI(x(O),R) in S x C, where LI(x(O),R) is the limiting

function of L(x(O),R,tl). By Theorem I of [81, we have

lim(x(O/tl), R(tl)) = (b,R), w.p.l. Po (3.16)

Note that (x(O/tl),R(tl)) is the MLE of (x(O),R).

It is proved in [61 that the MKLI defined by (3.1) is a

non-negative quantity and is equal to zero if and only if
P(Zt ) = Po(Z0) t) w.p.l. Po. This property is a

basis for MKLI to provide a measure of distance between the truth

(2.1) and Model (2.2). For the second step of establishing the

equivalence between the MLE and the MKLI, we shall prove that

this important property is preserved when (x(O),R) is replaced by

the MLE (x(O/tl),R(tl)) in the definition of MKLI. For this

purpose, we have the fcllowing theorem.

Theorem 3.3 Let S x C be the same set defined in Theorem 3.2

such that (3.16) holds for all (x(O),R)cS x C and (b,R) is the
unique minimum point of L(x(O),R) in S x C. Let

*A A

(x(O/tl),R(tl)) be the MLE which minimizes J(x(O),R,tl))

over S x C. Then,

lir Eo  J(x(O/tl), R(tl),t I ) = L(b,R) (3.17)
t CO

16
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Proof By the definition of d(x(O),R,ti), we have

E 2 (x(O),R,tl) < 2[(InIRI) 2 + U(x(O),R,tl)J

(3.18)

where

t -
1 2 2

U(x(O),R.t E E L.~t h (x (t O t (3.191 t2 o t-0 I.t ~~~()t I )(.9
*. ,;.'

By the hypothesis that L(x(O),R,tl) converges for all

(x(O),R)} S x C, we have for sufficiently large t1

2 S'tl-1 2

U(x(O),R,t 1)- (Tr RR ) +0 R ( E 11h -hll ) (3.20)
t 1 t-O R-1

+O(
ti

where we have

ivii.

+ 1
1l m 0( - -  0

A'.

17
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By (3.18)-(3.20), EoJ2
2 (x(O),p,t1) is uniformly bounded

in t for all (x(O),R)eS x C. Since (x(O/tl),R(tl) eS x C,

J(X(O/tL),R(tL)) is uniformly integrable for all tI . By

the continuity assumption of J over S x C and the uniformly

integrable theorem, we have

lim Eo J(x(O/tl),R(tl),tl)

= Eo  lir J(x(0/t l ),R(t l ),t I )
1

= L(b,R) O.E.D.

Theorem 3.3 assures that the basis for MKLI to be an
* information measure is preserved asymptotically if (x(O),R) is

replaced by (x(0/tl),R(tl)) because the second term in (3.1)

is independent of the assumed model. We shall call it the
generalized mean Kullback-Leibler's information (GMKLI) if the

estimate is used to replace (x(O),R) in the definition (3.1).

The idea of GMKLI is applied in the next few subsections for

tuning process noise.

C. TUNABLE DYNAMICAL MODELS

For a given sample function Zo , an extended Kalman

filter can be constructed based on the mathematical model given

by (2.2). The predicted estimate of x(t) denoted by x(t) is

derived by

x(t) = F(t-l)x(t-1) + G(t-1) v(t-1) (3.21a)

18



v(t-1) =z(t-l) -H(t-l) x(t-l) (3.21b)

where F(t-l) and H(t-1) are the Jacobian matrices of

f(x(t-l),t-1) and h(x(t-1),t-1) evaluated at the updated estimate

of x(t-l). The matrix G(t) in (3.21a) is given by

- G(t) = F(t) K(t) (3.21c)

K(t) = E(t)HT(t)[H(t)E(t)RT(t) + R]- 1  (3.21d)

E(t) = F(t-1) E+(t-I)FT(t-1) + 0 (3.21e)

E+(t) = [I-K(t)H(t)] E(t) (3.21f)

where 0 is a non-negative definite matrix which is often called

the covariance matrix of process noise that models the mismatch

of Model (2.2). The state estimate x(t) can be computed

recursively for all t, 0 < t < tI , if x(O), E(O), R, and 0 are

specified. Let 8 denote the totality of all parameters for

specifying x(O), E(O), Q; x(t,e,R) denotes the dependence of
the state estimate on the parameter 8 and R. The dynamical Model

(2.2a) is transformed into (3.21a) and (3.21b) which certainly

are tunable. We shall address how to tune the model from the

observed sample.

19
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n. GMKLI AND GMLE

The GMKLI of (3.21) with respect to (2.1) is defined by

- W(t I ) = L(0,Rt I ) - Lo(t I ) (3.22a)

where

t -1

*L(e, R, ti I I nR I +-E Eo 1z(t)-h(x(t, ,R) t j 2

tl--

R-
"I. (3 .22b )

L(tl) -- E(Xn Po(Z )) (3.22c)
t I

= AniRol + n

We shall first show that (3.22) indeed defines an information

measure.

,'.i Theorem 3.4 If R > 0 then

W(t I) > 0

* 
2

,<,, 20
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and the equality holds if and only if (_6,R) minimizes L and

EoI~ho~! (t; 8,R,t)II

for all 0 < t < t1 .

Proof By recognizing that no(t) is orthogonal to x(t;_,R),

it is not difficult to show that

L(6,R,t I ) = tnIRI + Tr (RoR -1 )

tl-1
A

t t-0 -1 R-1

Since Lo(tI ) is the unique minimum for XnjRj + Tr RoR-I

we complete the proof of this theorem.

Note that Lo(t I ) is independent of e and R; therefore,

we do not need to know the exact value of Lo(t I ) for the

purpose of estimate comparison. The state estimate which yields

the smallest L(-8,R,t I ) defined by (3.22b) is considered as the

best estimate in the sense of the GMKLI. In practical

applications, however, L(_6,R,t I ) cannot be computed directly

because Po is not known. To circumvent this problem, we shall

establish the equivalence relationship between the GMKLI and the

generalized maximum likelihood estimate (GMLE) which is

computable from the observed sample and the assumed model. The

,.- 21
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GMLE denoted by (6(tl), R(tl))of (e,R) is defined to be the

minimum point of the following function

-1 A 2
d(_,R,tl) An R +- z t)-h (x(t;0,R) ,t)) (3.23)

As in the case of a fixed dynamical model, we shall first study

the unimodal conditions of L(6,R,t I ) for a finite tI . Let
A

b (-,R) and

A ax(t;O,R)
(t)= b (3.24)

% The generalized R-observability Gramian is defined by

M(b;t I ) = £ T(t) HT(t) R-1 H(t) *(t) (3.25)
t=0

We have the following theorem.

Theorem 3.5 Let T be a compact and convex set containing

elements of x(O), Z(O), 0, and R defined by (3.21) such that E(O)

and 0 are positive-semidefinite and R is positive-definite.

Furthermore, we hypothesize that

22
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A

(i) EoM(b;t I ) > 0 for all b e T

(ii) for any bI , b2 E T and c(t) E Rq for each t,

we have the same condition as (iii) of Theorem 3.1.

Under the above hypotheses, there exists a unique minimum point
A

of L(8,T,t I ) in T.

The proof of this theorem can be carried out by the same way

done in Theorem 3.1. The equivalent relationship between the

GMLE and the GMKLI can be established similarly as introduced in

Section 3.B

When hypotheses of Theorem 3.5 are too difficult to

examine, the equivalence between GMLE and GMKLI can be studied as

follows. First, we observe that Lo(t I ) in the definition of

GMKLI (Eq. 3.22a) is independent of the assumed mathematical

model. The equivalent relationship will be established if
A A

L(8,R,t I ) can be approximated by d(O,R,t I ) (see Eq. 3.23).

The following theorem provides conditions that the above two

quantities coincide asymptotically.

Theorem 3.6 Under the hypotheses that

(i) h is uniformly bounded in both x and t

S:2
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t -1.

R

A 2
-Eo ~ohx e, R) ,t)H

RI

=0 w.p.1 Po,

lit jd(..e 1 ,ti) -L( 0,R~tl)j 0 w.p.l P0
ti - C

Proof By (2.1), we have

z (pt)-h (X(t; eR) ,t 112  1 IIlo-!(X(t; e,R) ,t)IjI2
R R1

+ 2n T (t) iR1h0oh,7{t;8,R),t)) + 11110(t)11 2

we claim that
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ti-i

(a) lim E = lTr Ow.p. P

1 R-1=

t -1
(b) lim Z noT(t)R-l(ho-h(x(t;8,R),t)) = 0tI tl t=o

w.p.1 Po

Result (a) can be proved by the law of large numbers because

no(t) is assumed to be a zero-mean white Gaussian process with

a covariance matrix RO . To prove (b), we first recognize that
k T
&0 n o (t)R-l(ho-h(x(t;,R),t) is a martingale sequence

because x(t;8,R) is orthogonal to the zero-mean white process

o(t). By Hypotheses (i), (2.3) and the discrete version of

the Khazminskii lemma 112) in [131, the claim (b) can be proved.

By (a), (b), hnd Hypothesis (ii), we complete the proof of the

theorem.

The insight of Hypothesis (ii) in Theorem 3.6 is

enlightened when we restrict h to be linear with constant

coefficients. In this case, Hypothesis (ii) becomes

t 1-1

lirn L E [IIH.-ct,e,R)11 2  -Eo1IH x(t'e,R)11 2  I=0
tl-

t10t = R_ ..'R

w.p.1 Po (3.26)

where is a constant matrix and

A

x(t,_,R) =_(xo(o,t)) - x(t;e,R)
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If the filter error becomes stationary and ergodic then certainly
*(3.26) holds. For most practical applications including

nonlinear state estimation problems, we find that residuals

exhibit stationary sample statistics as long as filtering

divergence does not occur.

...
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4. CONTINUOUS-TIME UNCERTAIN SYSTEMS

Basically, we require two substitutions in order to extend

the concepts introduced in Section 3 to cover the continuous-time

systems. First, we replace the ratio P/Po in the definitions
of MKLI and GMKLI by the Radon-Nikodym derivative (RND) of the
probability measures induced by the assumed model and the true

stochastic process. Secondly, we replace the likelihood

functions in the definitions of MLE and GMLE by a likelihood
ratio in a form of a RND with respect to a certain reference

measure. These two substitutions are necessary because we are

dealing with an uncountable sample space of a continuous-time

stochastic process.

For example, if we model the continuous-time system by a

diffusion process of an Ito differential equation [151, then the

reference measure can be chosen as the Wiener measure defined

over the space of continuous functions [161. Furthermore, the

RND of two Ito differential equations is well studied in the

literature, e.g., [15] and [17]. After the appropriate

substitutions are carried out, the analysis procedure introduced

in Section 3 is directly applicable. Here, we only present two

remarks that have been overlooked by researchers in this area,

e.g., in [18].

To introduce these two remarks, we first look at the

following simple example. Suppose that we use the model given by

dz(t) = a x(t) dt + a dB(t) (4.1)

27
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to represent the observed scalar diffusion process z(t), where

B(t) is the standard Brownian motion. However, the true

representation of z(t) is given by

dz(t) = aoxo(t) dt + co dB(t) (4.2)

There are two problems if we want to use the maximum likelihood

principle to estimate a and a based on (4.1) and the observed

sample. The first problem arises because the induced measure u

and uo of (4.1) and (4.2) respectively are singular to each

other if a c 0o . This fact can be proved by the result

reported in (191. The second problem is explained as follows.

Suppose, a = 0o , and suppose that we use the formulae provided

in [20] and [211 for the RND directly. We should have

t t

tn(RND1) 1 1__22 22

2 f (ax-a x )dz - I (a2x -a2x2)dtl] (4.3)
a 0 0

Considering Eq. 4.3 as a function of a and a, it is obvious that

the function is not unimodal in a and a. We arrive at the

following two observations regarding the above example.

28



Remark 1: The representation of z(t) can be given by

u : same as (4.1) but z(O) - N(0,0 2 )

Uo: dz(t) = aoXo(t)dt + 0dB(t) ; (4.4)

z(0) -1(0, o

Remark 2: The RND of (4.4) is given by

in( L.) =n(RNDl) - In( 2._) +1 z2(O) [ o- 21
du a 2

0 0

(4.5)

The above two remarks are the direct consequence of Theorem 5.3

of (151. It is also clear that (4.5) is an unimodal function

of a and a. Inspired by Akaike's original idea, we appreciate

the logarithmic term.

5. CONCLUSION

We follow Akaike's original idea to exploit the connection

between the mean Kullback-Leibler's information and the maximum

likelihood principle to cover the estimation problem of

non-linear systems with significant model uncertainties. We

29
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introduce the concept of the generalized mean Kullback-Leibler's

information and establish its relationship with the generalized

maximum likelihood principle. The results of this paper have

been applied to the trajectory estimation problem. Finally, we

present two remarks concerning the extension of the earlier part

of this paper to the diffusion process generated by the Ito

differential equation.

S
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